direct product, metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C22×C4○D28, C14.4C25, D28⋊14C23, C28.77C24, D14.1C24, C24.73D14, Dic7.2C24, Dic14⋊13C23, (C23×C4)⋊8D7, (C4×D7)⋊8C23, C7⋊D4⋊7C23, C2.5(D7×C24), (C23×C28)⋊11C2, (C2×C28)⋊15C23, (C22×C4)⋊46D14, C4.76(C23×D7), (C22×D28)⋊25C2, (C2×D28)⋊66C22, C22.7(C23×D7), (C2×C14).326C24, (C22×C28)⋊62C22, (C22×Dic14)⋊26C2, (C2×Dic14)⋊77C22, C23.347(C22×D7), (C23×C14).116C22, (C22×C14).433C23, (C2×Dic7).296C23, (C22×D7).245C23, (C23×D7).116C22, (C22×Dic7).239C22, C14⋊1(C2×C4○D4), C7⋊1(C22×C4○D4), (C2×C4×D7)⋊72C22, (D7×C22×C4)⋊26C2, (C2×C4)⋊12(C22×D7), (C2×C14)⋊13(C4○D4), (C2×C7⋊D4)⋊56C22, (C22×C7⋊D4)⋊22C2, SmallGroup(448,1368)
Series: Derived ►Chief ►Lower central ►Upper central
Subgroups: 3332 in 890 conjugacy classes, 463 normal (17 characteristic)
C1, C2, C2 [×6], C2 [×12], C4 [×8], C4 [×8], C22 [×11], C22 [×44], C7, C2×C4 [×28], C2×C4 [×44], D4 [×48], Q8 [×16], C23, C23 [×6], C23 [×24], D7 [×8], C14, C14 [×6], C14 [×4], C22×C4 [×2], C22×C4 [×12], C22×C4 [×26], C2×D4 [×36], C2×Q8 [×12], C4○D4 [×64], C24, C24 [×2], Dic7 [×8], C28 [×8], D14 [×8], D14 [×24], C2×C14 [×11], C2×C14 [×12], C23×C4, C23×C4 [×2], C22×D4 [×3], C22×Q8, C2×C4○D4 [×24], Dic14 [×16], C4×D7 [×32], D28 [×16], C2×Dic7 [×12], C7⋊D4 [×32], C2×C28 [×28], C22×D7 [×12], C22×D7 [×8], C22×C14, C22×C14 [×6], C22×C14 [×4], C22×C4○D4, C2×Dic14 [×12], C2×C4×D7 [×24], C2×D28 [×12], C4○D28 [×64], C22×Dic7 [×2], C2×C7⋊D4 [×24], C22×C28 [×2], C22×C28 [×12], C23×D7 [×2], C23×C14, C22×Dic14, D7×C22×C4 [×2], C22×D28, C2×C4○D28 [×24], C22×C7⋊D4 [×2], C23×C28, C22×C4○D28
Quotients:
C1, C2 [×31], C22 [×155], C23 [×155], D7, C4○D4 [×4], C24 [×31], D14 [×15], C2×C4○D4 [×6], C25, C22×D7 [×35], C22×C4○D4, C4○D28 [×4], C23×D7 [×15], C2×C4○D28 [×6], D7×C24, C22×C4○D28
Generators and relations
G = < a,b,c,d,e | a2=b2=c4=e2=1, d14=c2, ab=ba, ac=ca, ad=da, ae=ea, bc=cb, bd=db, be=eb, cd=dc, ce=ec, ede=c2d13 >
(1 124)(2 125)(3 126)(4 127)(5 128)(6 129)(7 130)(8 131)(9 132)(10 133)(11 134)(12 135)(13 136)(14 137)(15 138)(16 139)(17 140)(18 113)(19 114)(20 115)(21 116)(22 117)(23 118)(24 119)(25 120)(26 121)(27 122)(28 123)(29 153)(30 154)(31 155)(32 156)(33 157)(34 158)(35 159)(36 160)(37 161)(38 162)(39 163)(40 164)(41 165)(42 166)(43 167)(44 168)(45 141)(46 142)(47 143)(48 144)(49 145)(50 146)(51 147)(52 148)(53 149)(54 150)(55 151)(56 152)(57 180)(58 181)(59 182)(60 183)(61 184)(62 185)(63 186)(64 187)(65 188)(66 189)(67 190)(68 191)(69 192)(70 193)(71 194)(72 195)(73 196)(74 169)(75 170)(76 171)(77 172)(78 173)(79 174)(80 175)(81 176)(82 177)(83 178)(84 179)(85 213)(86 214)(87 215)(88 216)(89 217)(90 218)(91 219)(92 220)(93 221)(94 222)(95 223)(96 224)(97 197)(98 198)(99 199)(100 200)(101 201)(102 202)(103 203)(104 204)(105 205)(106 206)(107 207)(108 208)(109 209)(110 210)(111 211)(112 212)
(1 193)(2 194)(3 195)(4 196)(5 169)(6 170)(7 171)(8 172)(9 173)(10 174)(11 175)(12 176)(13 177)(14 178)(15 179)(16 180)(17 181)(18 182)(19 183)(20 184)(21 185)(22 186)(23 187)(24 188)(25 189)(26 190)(27 191)(28 192)(29 103)(30 104)(31 105)(32 106)(33 107)(34 108)(35 109)(36 110)(37 111)(38 112)(39 85)(40 86)(41 87)(42 88)(43 89)(44 90)(45 91)(46 92)(47 93)(48 94)(49 95)(50 96)(51 97)(52 98)(53 99)(54 100)(55 101)(56 102)(57 139)(58 140)(59 113)(60 114)(61 115)(62 116)(63 117)(64 118)(65 119)(66 120)(67 121)(68 122)(69 123)(70 124)(71 125)(72 126)(73 127)(74 128)(75 129)(76 130)(77 131)(78 132)(79 133)(80 134)(81 135)(82 136)(83 137)(84 138)(141 219)(142 220)(143 221)(144 222)(145 223)(146 224)(147 197)(148 198)(149 199)(150 200)(151 201)(152 202)(153 203)(154 204)(155 205)(156 206)(157 207)(158 208)(159 209)(160 210)(161 211)(162 212)(163 213)(164 214)(165 215)(166 216)(167 217)(168 218)
(1 95 15 109)(2 96 16 110)(3 97 17 111)(4 98 18 112)(5 99 19 85)(6 100 20 86)(7 101 21 87)(8 102 22 88)(9 103 23 89)(10 104 24 90)(11 105 25 91)(12 106 26 92)(13 107 27 93)(14 108 28 94)(29 187 43 173)(30 188 44 174)(31 189 45 175)(32 190 46 176)(33 191 47 177)(34 192 48 178)(35 193 49 179)(36 194 50 180)(37 195 51 181)(38 196 52 182)(39 169 53 183)(40 170 54 184)(41 171 55 185)(42 172 56 186)(57 160 71 146)(58 161 72 147)(59 162 73 148)(60 163 74 149)(61 164 75 150)(62 165 76 151)(63 166 77 152)(64 167 78 153)(65 168 79 154)(66 141 80 155)(67 142 81 156)(68 143 82 157)(69 144 83 158)(70 145 84 159)(113 212 127 198)(114 213 128 199)(115 214 129 200)(116 215 130 201)(117 216 131 202)(118 217 132 203)(119 218 133 204)(120 219 134 205)(121 220 135 206)(122 221 136 207)(123 222 137 208)(124 223 138 209)(125 224 139 210)(126 197 140 211)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28)(29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168)(169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196)(197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224)
(1 178)(2 177)(3 176)(4 175)(5 174)(6 173)(7 172)(8 171)(9 170)(10 169)(11 196)(12 195)(13 194)(14 193)(15 192)(16 191)(17 190)(18 189)(19 188)(20 187)(21 186)(22 185)(23 184)(24 183)(25 182)(26 181)(27 180)(28 179)(29 100)(30 99)(31 98)(32 97)(33 96)(34 95)(35 94)(36 93)(37 92)(38 91)(39 90)(40 89)(41 88)(42 87)(43 86)(44 85)(45 112)(46 111)(47 110)(48 109)(49 108)(50 107)(51 106)(52 105)(53 104)(54 103)(55 102)(56 101)(57 122)(58 121)(59 120)(60 119)(61 118)(62 117)(63 116)(64 115)(65 114)(66 113)(67 140)(68 139)(69 138)(70 137)(71 136)(72 135)(73 134)(74 133)(75 132)(76 131)(77 130)(78 129)(79 128)(80 127)(81 126)(82 125)(83 124)(84 123)(141 212)(142 211)(143 210)(144 209)(145 208)(146 207)(147 206)(148 205)(149 204)(150 203)(151 202)(152 201)(153 200)(154 199)(155 198)(156 197)(157 224)(158 223)(159 222)(160 221)(161 220)(162 219)(163 218)(164 217)(165 216)(166 215)(167 214)(168 213)
G:=sub<Sym(224)| (1,124)(2,125)(3,126)(4,127)(5,128)(6,129)(7,130)(8,131)(9,132)(10,133)(11,134)(12,135)(13,136)(14,137)(15,138)(16,139)(17,140)(18,113)(19,114)(20,115)(21,116)(22,117)(23,118)(24,119)(25,120)(26,121)(27,122)(28,123)(29,153)(30,154)(31,155)(32,156)(33,157)(34,158)(35,159)(36,160)(37,161)(38,162)(39,163)(40,164)(41,165)(42,166)(43,167)(44,168)(45,141)(46,142)(47,143)(48,144)(49,145)(50,146)(51,147)(52,148)(53,149)(54,150)(55,151)(56,152)(57,180)(58,181)(59,182)(60,183)(61,184)(62,185)(63,186)(64,187)(65,188)(66,189)(67,190)(68,191)(69,192)(70,193)(71,194)(72,195)(73,196)(74,169)(75,170)(76,171)(77,172)(78,173)(79,174)(80,175)(81,176)(82,177)(83,178)(84,179)(85,213)(86,214)(87,215)(88,216)(89,217)(90,218)(91,219)(92,220)(93,221)(94,222)(95,223)(96,224)(97,197)(98,198)(99,199)(100,200)(101,201)(102,202)(103,203)(104,204)(105,205)(106,206)(107,207)(108,208)(109,209)(110,210)(111,211)(112,212), (1,193)(2,194)(3,195)(4,196)(5,169)(6,170)(7,171)(8,172)(9,173)(10,174)(11,175)(12,176)(13,177)(14,178)(15,179)(16,180)(17,181)(18,182)(19,183)(20,184)(21,185)(22,186)(23,187)(24,188)(25,189)(26,190)(27,191)(28,192)(29,103)(30,104)(31,105)(32,106)(33,107)(34,108)(35,109)(36,110)(37,111)(38,112)(39,85)(40,86)(41,87)(42,88)(43,89)(44,90)(45,91)(46,92)(47,93)(48,94)(49,95)(50,96)(51,97)(52,98)(53,99)(54,100)(55,101)(56,102)(57,139)(58,140)(59,113)(60,114)(61,115)(62,116)(63,117)(64,118)(65,119)(66,120)(67,121)(68,122)(69,123)(70,124)(71,125)(72,126)(73,127)(74,128)(75,129)(76,130)(77,131)(78,132)(79,133)(80,134)(81,135)(82,136)(83,137)(84,138)(141,219)(142,220)(143,221)(144,222)(145,223)(146,224)(147,197)(148,198)(149,199)(150,200)(151,201)(152,202)(153,203)(154,204)(155,205)(156,206)(157,207)(158,208)(159,209)(160,210)(161,211)(162,212)(163,213)(164,214)(165,215)(166,216)(167,217)(168,218), (1,95,15,109)(2,96,16,110)(3,97,17,111)(4,98,18,112)(5,99,19,85)(6,100,20,86)(7,101,21,87)(8,102,22,88)(9,103,23,89)(10,104,24,90)(11,105,25,91)(12,106,26,92)(13,107,27,93)(14,108,28,94)(29,187,43,173)(30,188,44,174)(31,189,45,175)(32,190,46,176)(33,191,47,177)(34,192,48,178)(35,193,49,179)(36,194,50,180)(37,195,51,181)(38,196,52,182)(39,169,53,183)(40,170,54,184)(41,171,55,185)(42,172,56,186)(57,160,71,146)(58,161,72,147)(59,162,73,148)(60,163,74,149)(61,164,75,150)(62,165,76,151)(63,166,77,152)(64,167,78,153)(65,168,79,154)(66,141,80,155)(67,142,81,156)(68,143,82,157)(69,144,83,158)(70,145,84,159)(113,212,127,198)(114,213,128,199)(115,214,129,200)(116,215,130,201)(117,216,131,202)(118,217,132,203)(119,218,133,204)(120,219,134,205)(121,220,135,206)(122,221,136,207)(123,222,137,208)(124,223,138,209)(125,224,139,210)(126,197,140,211), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168)(169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196)(197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224), (1,178)(2,177)(3,176)(4,175)(5,174)(6,173)(7,172)(8,171)(9,170)(10,169)(11,196)(12,195)(13,194)(14,193)(15,192)(16,191)(17,190)(18,189)(19,188)(20,187)(21,186)(22,185)(23,184)(24,183)(25,182)(26,181)(27,180)(28,179)(29,100)(30,99)(31,98)(32,97)(33,96)(34,95)(35,94)(36,93)(37,92)(38,91)(39,90)(40,89)(41,88)(42,87)(43,86)(44,85)(45,112)(46,111)(47,110)(48,109)(49,108)(50,107)(51,106)(52,105)(53,104)(54,103)(55,102)(56,101)(57,122)(58,121)(59,120)(60,119)(61,118)(62,117)(63,116)(64,115)(65,114)(66,113)(67,140)(68,139)(69,138)(70,137)(71,136)(72,135)(73,134)(74,133)(75,132)(76,131)(77,130)(78,129)(79,128)(80,127)(81,126)(82,125)(83,124)(84,123)(141,212)(142,211)(143,210)(144,209)(145,208)(146,207)(147,206)(148,205)(149,204)(150,203)(151,202)(152,201)(153,200)(154,199)(155,198)(156,197)(157,224)(158,223)(159,222)(160,221)(161,220)(162,219)(163,218)(164,217)(165,216)(166,215)(167,214)(168,213)>;
G:=Group( (1,124)(2,125)(3,126)(4,127)(5,128)(6,129)(7,130)(8,131)(9,132)(10,133)(11,134)(12,135)(13,136)(14,137)(15,138)(16,139)(17,140)(18,113)(19,114)(20,115)(21,116)(22,117)(23,118)(24,119)(25,120)(26,121)(27,122)(28,123)(29,153)(30,154)(31,155)(32,156)(33,157)(34,158)(35,159)(36,160)(37,161)(38,162)(39,163)(40,164)(41,165)(42,166)(43,167)(44,168)(45,141)(46,142)(47,143)(48,144)(49,145)(50,146)(51,147)(52,148)(53,149)(54,150)(55,151)(56,152)(57,180)(58,181)(59,182)(60,183)(61,184)(62,185)(63,186)(64,187)(65,188)(66,189)(67,190)(68,191)(69,192)(70,193)(71,194)(72,195)(73,196)(74,169)(75,170)(76,171)(77,172)(78,173)(79,174)(80,175)(81,176)(82,177)(83,178)(84,179)(85,213)(86,214)(87,215)(88,216)(89,217)(90,218)(91,219)(92,220)(93,221)(94,222)(95,223)(96,224)(97,197)(98,198)(99,199)(100,200)(101,201)(102,202)(103,203)(104,204)(105,205)(106,206)(107,207)(108,208)(109,209)(110,210)(111,211)(112,212), (1,193)(2,194)(3,195)(4,196)(5,169)(6,170)(7,171)(8,172)(9,173)(10,174)(11,175)(12,176)(13,177)(14,178)(15,179)(16,180)(17,181)(18,182)(19,183)(20,184)(21,185)(22,186)(23,187)(24,188)(25,189)(26,190)(27,191)(28,192)(29,103)(30,104)(31,105)(32,106)(33,107)(34,108)(35,109)(36,110)(37,111)(38,112)(39,85)(40,86)(41,87)(42,88)(43,89)(44,90)(45,91)(46,92)(47,93)(48,94)(49,95)(50,96)(51,97)(52,98)(53,99)(54,100)(55,101)(56,102)(57,139)(58,140)(59,113)(60,114)(61,115)(62,116)(63,117)(64,118)(65,119)(66,120)(67,121)(68,122)(69,123)(70,124)(71,125)(72,126)(73,127)(74,128)(75,129)(76,130)(77,131)(78,132)(79,133)(80,134)(81,135)(82,136)(83,137)(84,138)(141,219)(142,220)(143,221)(144,222)(145,223)(146,224)(147,197)(148,198)(149,199)(150,200)(151,201)(152,202)(153,203)(154,204)(155,205)(156,206)(157,207)(158,208)(159,209)(160,210)(161,211)(162,212)(163,213)(164,214)(165,215)(166,216)(167,217)(168,218), (1,95,15,109)(2,96,16,110)(3,97,17,111)(4,98,18,112)(5,99,19,85)(6,100,20,86)(7,101,21,87)(8,102,22,88)(9,103,23,89)(10,104,24,90)(11,105,25,91)(12,106,26,92)(13,107,27,93)(14,108,28,94)(29,187,43,173)(30,188,44,174)(31,189,45,175)(32,190,46,176)(33,191,47,177)(34,192,48,178)(35,193,49,179)(36,194,50,180)(37,195,51,181)(38,196,52,182)(39,169,53,183)(40,170,54,184)(41,171,55,185)(42,172,56,186)(57,160,71,146)(58,161,72,147)(59,162,73,148)(60,163,74,149)(61,164,75,150)(62,165,76,151)(63,166,77,152)(64,167,78,153)(65,168,79,154)(66,141,80,155)(67,142,81,156)(68,143,82,157)(69,144,83,158)(70,145,84,159)(113,212,127,198)(114,213,128,199)(115,214,129,200)(116,215,130,201)(117,216,131,202)(118,217,132,203)(119,218,133,204)(120,219,134,205)(121,220,135,206)(122,221,136,207)(123,222,137,208)(124,223,138,209)(125,224,139,210)(126,197,140,211), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168)(169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196)(197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224), (1,178)(2,177)(3,176)(4,175)(5,174)(6,173)(7,172)(8,171)(9,170)(10,169)(11,196)(12,195)(13,194)(14,193)(15,192)(16,191)(17,190)(18,189)(19,188)(20,187)(21,186)(22,185)(23,184)(24,183)(25,182)(26,181)(27,180)(28,179)(29,100)(30,99)(31,98)(32,97)(33,96)(34,95)(35,94)(36,93)(37,92)(38,91)(39,90)(40,89)(41,88)(42,87)(43,86)(44,85)(45,112)(46,111)(47,110)(48,109)(49,108)(50,107)(51,106)(52,105)(53,104)(54,103)(55,102)(56,101)(57,122)(58,121)(59,120)(60,119)(61,118)(62,117)(63,116)(64,115)(65,114)(66,113)(67,140)(68,139)(69,138)(70,137)(71,136)(72,135)(73,134)(74,133)(75,132)(76,131)(77,130)(78,129)(79,128)(80,127)(81,126)(82,125)(83,124)(84,123)(141,212)(142,211)(143,210)(144,209)(145,208)(146,207)(147,206)(148,205)(149,204)(150,203)(151,202)(152,201)(153,200)(154,199)(155,198)(156,197)(157,224)(158,223)(159,222)(160,221)(161,220)(162,219)(163,218)(164,217)(165,216)(166,215)(167,214)(168,213) );
G=PermutationGroup([(1,124),(2,125),(3,126),(4,127),(5,128),(6,129),(7,130),(8,131),(9,132),(10,133),(11,134),(12,135),(13,136),(14,137),(15,138),(16,139),(17,140),(18,113),(19,114),(20,115),(21,116),(22,117),(23,118),(24,119),(25,120),(26,121),(27,122),(28,123),(29,153),(30,154),(31,155),(32,156),(33,157),(34,158),(35,159),(36,160),(37,161),(38,162),(39,163),(40,164),(41,165),(42,166),(43,167),(44,168),(45,141),(46,142),(47,143),(48,144),(49,145),(50,146),(51,147),(52,148),(53,149),(54,150),(55,151),(56,152),(57,180),(58,181),(59,182),(60,183),(61,184),(62,185),(63,186),(64,187),(65,188),(66,189),(67,190),(68,191),(69,192),(70,193),(71,194),(72,195),(73,196),(74,169),(75,170),(76,171),(77,172),(78,173),(79,174),(80,175),(81,176),(82,177),(83,178),(84,179),(85,213),(86,214),(87,215),(88,216),(89,217),(90,218),(91,219),(92,220),(93,221),(94,222),(95,223),(96,224),(97,197),(98,198),(99,199),(100,200),(101,201),(102,202),(103,203),(104,204),(105,205),(106,206),(107,207),(108,208),(109,209),(110,210),(111,211),(112,212)], [(1,193),(2,194),(3,195),(4,196),(5,169),(6,170),(7,171),(8,172),(9,173),(10,174),(11,175),(12,176),(13,177),(14,178),(15,179),(16,180),(17,181),(18,182),(19,183),(20,184),(21,185),(22,186),(23,187),(24,188),(25,189),(26,190),(27,191),(28,192),(29,103),(30,104),(31,105),(32,106),(33,107),(34,108),(35,109),(36,110),(37,111),(38,112),(39,85),(40,86),(41,87),(42,88),(43,89),(44,90),(45,91),(46,92),(47,93),(48,94),(49,95),(50,96),(51,97),(52,98),(53,99),(54,100),(55,101),(56,102),(57,139),(58,140),(59,113),(60,114),(61,115),(62,116),(63,117),(64,118),(65,119),(66,120),(67,121),(68,122),(69,123),(70,124),(71,125),(72,126),(73,127),(74,128),(75,129),(76,130),(77,131),(78,132),(79,133),(80,134),(81,135),(82,136),(83,137),(84,138),(141,219),(142,220),(143,221),(144,222),(145,223),(146,224),(147,197),(148,198),(149,199),(150,200),(151,201),(152,202),(153,203),(154,204),(155,205),(156,206),(157,207),(158,208),(159,209),(160,210),(161,211),(162,212),(163,213),(164,214),(165,215),(166,216),(167,217),(168,218)], [(1,95,15,109),(2,96,16,110),(3,97,17,111),(4,98,18,112),(5,99,19,85),(6,100,20,86),(7,101,21,87),(8,102,22,88),(9,103,23,89),(10,104,24,90),(11,105,25,91),(12,106,26,92),(13,107,27,93),(14,108,28,94),(29,187,43,173),(30,188,44,174),(31,189,45,175),(32,190,46,176),(33,191,47,177),(34,192,48,178),(35,193,49,179),(36,194,50,180),(37,195,51,181),(38,196,52,182),(39,169,53,183),(40,170,54,184),(41,171,55,185),(42,172,56,186),(57,160,71,146),(58,161,72,147),(59,162,73,148),(60,163,74,149),(61,164,75,150),(62,165,76,151),(63,166,77,152),(64,167,78,153),(65,168,79,154),(66,141,80,155),(67,142,81,156),(68,143,82,157),(69,144,83,158),(70,145,84,159),(113,212,127,198),(114,213,128,199),(115,214,129,200),(116,215,130,201),(117,216,131,202),(118,217,132,203),(119,218,133,204),(120,219,134,205),(121,220,135,206),(122,221,136,207),(123,222,137,208),(124,223,138,209),(125,224,139,210),(126,197,140,211)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28),(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168),(169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196),(197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224)], [(1,178),(2,177),(3,176),(4,175),(5,174),(6,173),(7,172),(8,171),(9,170),(10,169),(11,196),(12,195),(13,194),(14,193),(15,192),(16,191),(17,190),(18,189),(19,188),(20,187),(21,186),(22,185),(23,184),(24,183),(25,182),(26,181),(27,180),(28,179),(29,100),(30,99),(31,98),(32,97),(33,96),(34,95),(35,94),(36,93),(37,92),(38,91),(39,90),(40,89),(41,88),(42,87),(43,86),(44,85),(45,112),(46,111),(47,110),(48,109),(49,108),(50,107),(51,106),(52,105),(53,104),(54,103),(55,102),(56,101),(57,122),(58,121),(59,120),(60,119),(61,118),(62,117),(63,116),(64,115),(65,114),(66,113),(67,140),(68,139),(69,138),(70,137),(71,136),(72,135),(73,134),(74,133),(75,132),(76,131),(77,130),(78,129),(79,128),(80,127),(81,126),(82,125),(83,124),(84,123),(141,212),(142,211),(143,210),(144,209),(145,208),(146,207),(147,206),(148,205),(149,204),(150,203),(151,202),(152,201),(153,200),(154,199),(155,198),(156,197),(157,224),(158,223),(159,222),(160,221),(161,220),(162,219),(163,218),(164,217),(165,216),(166,215),(167,214),(168,213)])
Matrix representation ►G ⊆ GL5(𝔽29)
1 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 28 | 0 |
0 | 0 | 0 | 0 | 28 |
28 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 1 |
28 | 0 | 0 | 0 | 0 |
0 | 12 | 0 | 0 | 0 |
0 | 0 | 12 | 0 | 0 |
0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 |
0 | 0 | 12 | 0 | 0 |
0 | 12 | 0 | 0 | 0 |
0 | 0 | 0 | 27 | 21 |
0 | 0 | 0 | 16 | 20 |
1 | 0 | 0 | 0 | 0 |
0 | 0 | 17 | 0 | 0 |
0 | 12 | 0 | 0 | 0 |
0 | 0 | 0 | 8 | 28 |
0 | 0 | 0 | 5 | 21 |
G:=sub<GL(5,GF(29))| [1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,28,0,0,0,0,0,28],[28,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1],[28,0,0,0,0,0,12,0,0,0,0,0,12,0,0,0,0,0,1,0,0,0,0,0,1],[1,0,0,0,0,0,0,12,0,0,0,12,0,0,0,0,0,0,27,16,0,0,0,21,20],[1,0,0,0,0,0,0,12,0,0,0,17,0,0,0,0,0,0,8,5,0,0,0,28,21] >;
136 conjugacy classes
class | 1 | 2A | ··· | 2G | 2H | 2I | 2J | 2K | 2L | ··· | 2S | 4A | ··· | 4H | 4I | 4J | 4K | 4L | 4M | ··· | 4T | 7A | 7B | 7C | 14A | ··· | 14AS | 28A | ··· | 28AV |
order | 1 | 2 | ··· | 2 | 2 | 2 | 2 | 2 | 2 | ··· | 2 | 4 | ··· | 4 | 4 | 4 | 4 | 4 | 4 | ··· | 4 | 7 | 7 | 7 | 14 | ··· | 14 | 28 | ··· | 28 |
size | 1 | 1 | ··· | 1 | 2 | 2 | 2 | 2 | 14 | ··· | 14 | 1 | ··· | 1 | 2 | 2 | 2 | 2 | 14 | ··· | 14 | 2 | 2 | 2 | 2 | ··· | 2 | 2 | ··· | 2 |
136 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 |
type | + | + | + | + | + | + | + | + | + | + | ||
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | D7 | C4○D4 | D14 | D14 | C4○D28 |
kernel | C22×C4○D28 | C22×Dic14 | D7×C22×C4 | C22×D28 | C2×C4○D28 | C22×C7⋊D4 | C23×C28 | C23×C4 | C2×C14 | C22×C4 | C24 | C22 |
# reps | 1 | 1 | 2 | 1 | 24 | 2 | 1 | 3 | 8 | 42 | 3 | 48 |
In GAP, Magma, Sage, TeX
C_2^2\times C_4\circ D_{28}
% in TeX
G:=Group("C2^2xC4oD28");
// GroupNames label
G:=SmallGroup(448,1368);
// by ID
G=gap.SmallGroup(448,1368);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-7,136,1684,18822]);
// Polycyclic
G:=Group<a,b,c,d,e|a^2=b^2=c^4=e^2=1,d^14=c^2,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e=c^2*d^13>;
// generators/relations